
Informatics Practices
Class XII (As per CBSE Board)

Chapter 2

Data Handling

using Pandas -2

New
syllabus
2021-22

Visit : python.mykvs.in for regular updates

Data handling using pandas

Descriptive statistics
Descriptive statistics are used to describe / summarize large data in
ways that are meaningful and useful. Means “must knows” with any
set of data. It gives us a general idea of trends in our data including:
• The mean, mode, median and range.
• Variance and standard deviation ,quartile
• SumCount, maximum and minimum.
Descriptive statistics is useful because it allows us take decision. For
example, let’s say we are having data on the incomes of one million
people. No one is going to want to read a million pieces of data; if they
did, they wouldn’t be able to get any useful information from it. On the
other hand, if we summarize it, it becomes useful: an average wage, or
a median income, is much easier to understand than reams of data.

Visit : python.mykvs.in for regular updates

Data handling using pandas

Steps to Get the descriptive statistics
• Step 1: Collect the Data

Either from data file or from user
• Step 2: Create the DataFrame

Create dataframe from pandas object
• Step 3: Get the Descriptive Statistics for Pandas

DataFrame
Get the descriptive statistics as per

requirement like mean,mode,max,sum etc.
from pandas object

Note :- Dataframe object is best for descriptive statistics as it can hold
large amount of data and relevant functions.

Visit : python.mykvs.in for regular updates

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

Pandas dataframe object come up with the methods to
calculate max, min, count, sum, mean, median, mode,
quartile, Standard deviation, variance.
Mean
Mean is an average of all the numbers. The steps required
to calculate a mean are:
• sum up all the values of a target variable in the dataset
• divide the sum by the number of values

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

Median- Median is the middle value of a sorted list of numbers.
The steps required to get a median from a list of numbers are:
• sort the numbers from smallest to highest
• if the list has an odd number of values, the value in the middle

position is the median
• if the list has an even number of values, the average of the two

values in the middle will be the median
Mode-To find the mode, or modal value, it is best to put the
numbers in order. Then count how many of each number. A number
that appears most often is the mode.e.g.{19, 8, 29, 35, 19, 28, 15}.
Arrange them in order: {8, 15, 19, 19, 28, 29, 35} .19 appears twice,
all the rest appear only once, so 19 is the mode.
Having two modes is called "bimodal".Having more than two modes
is called "multimodal".

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

#e.g. program for data aggregation/descriptive statistics

from pandas import DataFrame

Cars = {'Brand': ['Maruti ciaz','Ford ','Tata Indigo','Toyota Corolla','Audi
A9'],

'Price': [22000,27000,25000,29000,35000],
'Year': [2014,2015,2016,2017,2018]
}

df = DataFrame(Cars, columns= ['Brand', 'Price','Year'])

stats_numeric = df['Price'].describe().astype (int)
print (stats_numeric)
#describe method return mean,standard deviationm,min,max,
% values

OUTPUT
count 5
mean 27600
std 4878
min 22000
25% 25000
50% 27000
75% 29000
max 35000
Name: Price, dtype:
int32

STEP1

STEP2

STEP3

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

#e.g. program for data aggregation/descriptive statistics
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,25,25,24,31]),
'Score':pd.Series([87,67,89,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
print("Dataframe contents")
print (df)
print(df.count())
print("count age",df[['Age']].count())
print("sum of score",df[['Score']].sum())
print("minimum age",df[['Age']].min())
print("maximum score",df[['Score']].max())
print("mean age",df[['Age']].mean())
print("mode of age",df[['Age']].mode())
print("median of score",df[['Score']].median())

OUTPUT
Dataframe contents

Name Age Score
0 Sachin 26 87
1 Dhoni 25 67
2 Virat 25 89
3 Rohit 24 55
4 Shikhar 31 47
Name 5
Age 5
Score 5
dtype: int64
count age Age 5
dtype: int64
sum of score Score 345
dtype: int64
minimum age Age 24
dtype: int64
maximum score Score 89
dtype: int64
mean age Age 26.2
dtype: float64
mode of age Age
0 25
median of score Score 67.0
dtype: float64

STEP1

STEP2

STEP3

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

Quantile -
Quantile statistics is a part of a data set. It is used to describe data in a clear
and understandable way.The 0,30 quantile is basically saying that 30 % of the
observations in our data set is below a given line. On the other hand ,it is also stating
that there are 70 % remaining above the line we set.
Common Quantiles
Certain types of quantiles are used commonly enough to have specific names. Below is
a list of these:
• The 2 quantile is called the median
• The 3 quantiles are called terciles
• The 4 quantiles are called quartiles
• The 5 quantiles are called quintiles
• The 6 quantiles are called sextiles
• The 7 quantiles are called septiles
• The 8 quantiles are called octiles
• The 10 quantiles are called deciles
• The 12 quantiles are called duodeciles
• The 20 quantiles are called vigintiles
• The 100 quantiles are called percentiles
• The 1000 quantiles are called permilles

Quantiles

Visit : python.mykvs.in for regular updates

The word “quantile” comes from the word quantity. means, a
quantile is where a sample is divided into equal-sized or subgroups
(that’s why it’s sometimes called a “fractile“). So that’s why ,It can
also refer to dividing a probability distribution into areas of equal
probability.
The median is a kind of quantile; the median is placed in a
probability distribution at center so that exactly half of the data is
lower than the median and half of the data is above the median. The
median cuts a distribution into two equal parts and so why
sometimes it is called 2-quantile.
Quartiles are quantiles; when they divide the distribution into four
equal parts. Deciles are quantiles that divide a distribution into 10
equal parts and Percentiles when that divide a distribution into 100
equal parts .

Quantiles

Visit : python.mykvs.in for regular updates

How to Find Quantiles?
Sample question: Find the number in the following set of data where 30
percent of values fall below it, and 70 percent fall above:
2 4 5 7 9 11 12 17 19 21 22 31 35 36 45 44 55 68 79 80 81 88 90 91 92 100 112
113 114 120 121 132 145 148 149 152 157 170 180 190
Step 1: Order the data from smallest to largest. The data in the question is
already in ascending order.
Step 2: Count how many observations you have in your data set. this particular
data set has 40 items.
Step 3: Convert any percentage to a decimal for “q”. We are looking for the
number where 30 percent of the values fall below it, so convert that to .3.
Step 4: Insert your values into the formula:
ith observation = q (n + 1)
ith observation = .3 (40 + 1) = 12.3
Answer: The ith observation is at 12.3, so we round down to 12 (remembering
that this formula is an estimate). The 12th number in the set is 31, which is the
number where 30 percent of the values fall below it.

Quantiles

Visit : python.mykvs.in for regular updates

How to Find Quartiles in python
In pandas series object->

import pandas as pd
import numpy as np
s = pd.Series([1, 2, 4, 5,6,8,10,12,16,20])
r=s.quantile([0.25,0.5,0.75])
print(r)

OUTPUT
0.25 4.25
0.50 7.00
0.75 11.50
dtype: float64

#Program in python to find 0.25 quantile of
series[1, 10, 100, 1000]
import pandas as pd
import numpy as np
s = pd.Series([1, 10, 100, 1000])
r=s.quantile(.25)
print(r)

OUTPUT 7.75

Solution steps
1. q=0.25 (0.25 quantile)
2. n = 4 (no of elements)
=(n-1)*q+1
=(4-1)*0.25+1
=3*0.25+1
=0.75+1
=1.75

2.Now integer part is a=1 and fraction part is 0.75 and T is term.
Now formula for quantile is
=T1+b*(T2-T1)
=1+0.75*(10-1)
=1+0.75*9
=1+6.75 = 7.75 Quantile is 7.75
Note:- That in series [1, 10, 100, 1000] 1 is at 1 position 10 is at 2,
100 is at 3 and so on.Here we are choosing T1 as 1 because at 1
position (integer part of 1.75 is 1) value is 1(T1).here we are
choosing value and then next fraction part is between 1 to
10,that is being found by 0.75*(10-1).Its result is 6.75 next to
1.Thats why we are adding 1 with 6.75.

How to Find Quartiles in python

Visit : python.mykvs.in for regular updates

Standard Deviation

Visit : python.mykvs.in for regular updates

standard deviation means measure the amount of variation /
dispersion of a set of values.A low standard deviation means the
values tend to be close to the mean in a set and a high standard
deviation means the values are spread out over a wider range.
Standard deviation is the most important concepts as far as
finance is concerned. Finance and banking is all about measuring
the risk and standard deviation measures risk. Standard deviation
is used by all portfolio managers to measure and track risk.
Steps to calculate the standard deviation:
1. Work out the Mean (the simple average of the numbers)
2. Then for each number:subtract the Mean and square the result
3. Then work out the mean of those squared differences.
4. Take the square root of that and we are done!

Standard Deviation

Visit : python.mykvs.in for regular updates

E.g. Std deviation for (9, 2, 12, 4, 5, 7)
Step 1. Work out the mean -(9+2+12+4+5+7) / 6 = 39/6 = 6.5
Step 2. Then for each number: subtract the Mean and square the
result - (9 - 6.5)2 = (2.5)2 = 6.25 , (2 - 6.5)2 = (-4.5)2 = 20.25
Perform same operation for all remaining numbers.
Step 3. Then work out the mean of those squared differences.
Sum = 6.25 + 20.25 + 2.25 + 6.25 + 30.25 + 0.25 = 65.5
Divide by N-1: (1/5) × 65.5 = 13.1(This value is "Sample Variance“)
Step 4. Take the square root of that: s = √(13.1) = 3.619...(stddev)

formula for Standard Deviation
Above e.g. is for practice
purpose otherwise stddev is performed for large amount of data

Standard Deviation

Visit : python.mykvs.in for regular updates

E.g. Std deviation for (9, 2, 12, 4, 5, 7)
import pandas as pd
import numpy as np

#Create a DataFrame
info = {

'Name':['Mohak','Freya','Viraj','Santosh','Mishti','Subrata'],
'Marks':[9, 2, 12, 4, 5, 7]}

data = pd.DataFrame(info)
standard deviation of the dataframe
r=data.std()
print(r)

OUTPUT
Marks 3.619392
dtype: float64

Descriptive statistics - dataframe

Visit : python.mykvs.in for regular updates

var() – Variance Function in python pandas is used to calculate variance of a given set of
numbers, Variance of a data frame, Variance of column and Variance of rows, let’s see
an example of each.
#e.g.program
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,25,25,24,31]),
'Score':pd.Series([87,67,89,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
print("Dataframe contents")
print (df)
print(df.var())
#df.loc[:,“Age"].var() for variance of specific column
#df.var(axis=0) column variance
#df.var(axis=1) row variance

Dataframe Operations

Visit : python.mykvs.in for regular updates

Data aggregation – Aggregation is the process of turning the values

of a dataset (or a subset of it) into one single value or data aggregation
is a multivalued function ,which require multiple values and return a
single value as a result.There are number of aggregations possible like
count,sum,min,max,median,quartile etc. These(count,sum etc.) are
descriptive statistics and other related operations on DataFrame Let us
make this clear! If we have a DataFrame like… Name Age Score

0 Sachin 26 87
1 Dhoni 25 67
2 Virat 25 89
3 Rohit 24 55
4 Shikhar 31 47

…then a simple aggregation method is to calculate the summary of the
Score, which is 87+67+89+55+47= 345. Or a different aggregation
method would be to count the number of Name, which is 5.

Dataframe operations

Visit : python.mykvs.in for regular updates

A groupby operation involves some combination of splitting the
object, applying a function, and combining the results. This can be
used to group large amounts of data and compute operations on
these groups.
E.g.
import pandas as pd
df = pd.DataFrame({'Animal': ['Tiger', 'Tiger','Parrot', 'Parrot'],

'Max Speed': [180., 170., 24., 26.]})
m=df.groupby(['Animal']).mean()
print(m)

OUTPUT
Max Speed
Animal
Parrot 25.0
Tiger 175.0

Group by

Dataframe operations

Visit : python.mykvs.in for regular updates

Sorting means arranging the contents in ascending or

descending order.There are two kinds of sorting available in
pandas(Dataframe).
1. By value(column)
2. By index

1. By value - Sorting over dataframe column/s elements is
supported by sort_values() method. We will cover here three
aspects of sorting values of dataframe.
• Sort a pandas dataframe in python by Ascending and

Descending
• Sort a python pandas dataframe by single column
• Sort a pandas dataframe by multiple columns.

Sorting

Dataframe operations

Visit : python.mykvs.in for regular updates

Sort the python pandas Dataframe by single column – Ascending order
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,27,25,24,31]),
'Score':pd.Series([87,89,67,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
print("Dataframe contents without sorting")
print (df)
df=df.sort_values(by='Score')
print("Dataframe contents after sorting")
print (df)
#In above example dictionary object is used to create
the dataframe.Elements of dataframe object df is s
orted by sort_value() method.As argument we are
passing value score for by parameter only.by default
it is sorting in ascending manner.

OUTPUT
Dataframe contents without sorting

Name Age Score
0 Sachin 26 87
1 Dhoni 27 89
2 Virat 25 67
3 Rohit 24 55
4 Shikhar 31 47

Dataframe contents after sorting
Name Age Score

4 Shikhar 31 47
3 Rohit 24 55
2 Virat 25 67
1 Dhoni 27 87
0 Sachin 26 89

Sorting

Visit : python.mykvs.in for regular updates

Sort the python pandas Dataframe by single column – Descending order
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,27,25,24,31]),
'Score':pd.Series([87,89,67,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
print("Dataframe contents without sorting")
print (df)
df=df.sort_values(by='Score',ascending=0)
print("Dataframe contents after sorting")
print (df)
#In above example dictionary object is used to create
the dataframe.Elements of dataframe object df is s
orted by sort_value() method.we are passing 0 for
Ascending parameter ,which sort the data in desce-
nding order of score.

OUTPUT
Dataframe contents without sorting

Name Age Score
0 Sachin 26 89
1 Dhoni 27 87
2 Virat 25 67
3 Rohit 24 55
4 Shikhar 31 47

Dataframe contents after sorting
Name Age Score

1 Dhoni 27 89
0 Sachin 26 87
2 Virat 25 67
3 Rohit 24 55
4 Shikhar 31 47

Dataframe operations

Sorting

Visit : python.mykvs.in for regular updates

Sort the pandas Dataframe by Multiple Columns
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,25,25,24,31]), 'Score':pd.Series([87,67,89,55,47])}
#Create a DataFrame
df = pd.DataFrame(d)
print("Dataframe contents without sorting")
print (df)
df=df.sort_values(by=['Age', 'Score'],ascending=[True,False])

print("Dataframe contents after sorting")
print (df)
#In above example dictionary object is used to create
the dataframe.Elements of dataframe object df is s
orted by sort_value() method.we are passing two columns
as by parameter value and in ascending parameter also
with two parameters first true and second false,which
means sort in ascending order of age and descending
order of score

OUTPUT
Dataframe contents without sorting

Name Age Score
0 Sachin 26 87
1 Dhoni 25 67
2 Virat 25 89
3 Rohit 24 55
4 Shikhar 31 47

Dataframe contents after sorting
Name Age Score

3 Rohit 24 55
2 Virat 25 89
1 Dhoni 25 67
0 Sachin 26 87
4 Shikhar 31 47

Dataframe operations

Sorting

Visit : python.mykvs.in for regular updates

2. By index - Sorting over dataframe index sort_index() is
supported by sort_values() method. We will cover here
three aspects of sorting values of dataframe. We will cover
here two aspects of sorting index of dataframe.

• how to sort a pandas dataframe in python by index in
Ascending order

• how to sort a pandas dataframe in python by index in
Descending order

Dataframe operations

Sorting

Visit : python.mykvs.in for regular updates

sort the dataframe in python pandas by index in ascending order:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,25,25,24,31]),
'Score':pd.Series([87,67,89,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
df=df.reindex([1,4,3,2,0])
print("Dataframe contents without sorting")
print (df)
df1=df.sort_index()
print("Dataframe contents after sorting")
print (df1)
#In above example dictionary object is used to create
the dataframe.Elements of dataframe object df is first
reindexed by reindex() method,index 1 is positioned at
0,4 at 1 and so on.then sorting by sort_index() method.
By default it is sorting in ascending order of index.

OUTPUT
Dataframe contents without sorting

Name Age Score
1 Dhoni 25 67
4 Shikhar 31 47
3 Rohit 24 55
2 Virat 25 89
0 Sachin 26 87
Dataframe contents after sorting

Name Age Score
0 Sachin 26 87
1 Dhoni 25 67
2 Virat 25 89
3 Rohit 24 55
4 Shikhar 31 47

index

Dataframe operations

Sorting

Visit : python.mykvs.in for regular updates

Sorting pandas dataframe by index in descending order:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Sachin','Dhoni','Virat','Rohit','Shikhar']),

'Age':pd.Series([26,25,25,24,31]),
'Score':pd.Series([87,67,89,55,47])}

#Create a DataFrame
df = pd.DataFrame(d)
df=df.reindex([1,4,3,2,0])
print("Dataframe contents without sorting")
print (df)
df1=df.sort_index(ascending=0)
print("Dataframe contents after sorting")
print (df1)
#In above example dictionary object is used to create
the dataframe.Elements of dataframe object df is first
reindexed by reindex() method,index 1 is positioned at
0,4 at 1 and so on.then sorting by sort_index() method.
Passing ascending=0 as argument for descending order.

OUTPUT
Dataframe contents without sorting

Name Age Score
1 Dhoni 25 67
4 Shikhar 31 47
3 Rohit 24 55
2 Virat 25 89
0 Sachin 26 87
Dataframe contents after sorting

Name Age Score
4 Shikhar 31 47
3 Rohit 24 55
2 Virat 25 89
1 Dhoni 25 67
0 Sachin 26 87

index

Dataframe operations

Sorting

Visit : python.mykvs.in for regular updates

Dataframe operations

Indexing

Index is like an address, that's how any data point across
the dataframe or series can be accessed. Rows and
columns both have indexes, rows indices are called as
index and for columns its general column names.
Indexing in pandas used for selecting particular rows
and columns of data from a DataFrame. Indexing could
mean selecting all the rows and some of the columns,
some of the rows and all of the columns, or some of
each of the rows and columns. Indexing can also be
known as Subset Selection.

Visit : python.mykvs.in for regular updates

Dataframe operations

Indexing e.g.
import pandas as pd
students = [('Mohak', 34, 'Sydeny') ,('Freya', 30, 'Delhi') ,('Rajesh', 16, 'New York')]
Create a DataFrame object
dfObj = pd.DataFrame(students, columns = ['Name' , 'Age', 'City'],
index=['a', 'b', 'c'])
#Selecting a Single Row by Index label
rowData = dfObj.loc['b' , :]
print("Select a Single Row " , rowData , sep='\n')
print("Type : " , type(rowData))
#Selecting multiple Rows by Index labels
rowData = dfObj.loc[['c' , 'b'] , :]
print("Select multiple Rows" , rowData , sep='\n')
#Select both Rows & Columns by Index labels
subset = dfObj.loc[['c' , 'b'] ,['Age', 'Name']]
print("Select both columns & Rows" , subset , sep='\n')
#Select a single column by Index Position
print(" Select column at index 2 ")
print(dfObj.iloc[: , 2])
#Select multiple columns by Index range
print(" Select columns in column index range 0 to 2")
print(dfObj.iloc[:, 0:2])

OUTPUT
Select a Single Row
Name Freya
Age 30
City Delhi
Name: b, dtype: object
Type : <class 'pandas.core.series.Series'>
Select multiple Rows

Name Age City
c Rajesh 16 New York
b Freya 30 Delhi
Select both columns & Rows

Age Name
c 16 Rajesh
b 30 Freya
Select column at index 2

a Sydeny
b Delhi
c New York
Name: City, dtype: object
Select columns in column index range 0 to

2
Name Age

a Mohak 34
b Freya 30
c Rajesh 16

Visit : python.mykvs.in for regular updates

Dataframe operations

Renaming Indexing e.g.

Index can be renamed using rename method.
e.g.

import pandas as pd

df = pd.DataFrame({'A': [11, 21, 31],
'B': [12, 22, 32],
'C': [13, 23, 33]},
index=['ONE', 'TWO', 'THREE'])

df_new = df.rename(columns={'A': 'a'}, index={'ONE': 'one'})
print(df_new)

OUTPUT
a B C

one 11 12 13
TWO 21 22 23
THREE 31 32 33

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

DataFrame -It is a 2-dimensional data structure with columns of
different types. It is just similar to a spreadsheet or SQL table, or a
dict of Series objects. It is generally the most commonly used
pandas object.

Pivot –Pivot reshapes data and uses unique values from index/
columns to form axes of the resulting dataframe. Index is column
name to use to make new frame’s index.Columns is column name
to use to make new frame’s columns.Values is column name to
use for populating new frame’s values.

Pivot table - Pivot table is used to summarize and aggregate data
inside dataframe.

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

Example of pivot:

PIVOT

DATAFRAME

ITEM COMPANY RUPEES USD

TV LG 12000 700

TV VIDEOCON 10000 650

AC LG 15000 800

AC SONY 14000 750

COMPANY LG SONY VIDEOCON
ITEM

AC 15000 14000 NaN
TV 12000 NaN 10000

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

There are two functions available in python for pivoting dataframe.

1.Pivot()
2.pivot_table()

1. pivot() - This function is used to create a new derived table(pivot) from
existing dataframe. It takes 3 arguments : index, columns, and values. As a
value for each of these parameters we need to specify a column name in the
original table(dataframe). Then the pivot function will create a new
table(pivot), whose row and column indices are the unique values of the
respective parameters. The cell values of the new table are taken from column
given as the values parameter.

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

#pivot() e.g. program
from collections import OrderedDict
from pandas import DataFrame
import pandas as pd
import numpy as np
table = OrderedDict((

("ITEM", ['TV', 'TV', 'AC', 'AC']),
('COMPANY',['LG', 'VIDEOCON', 'LG', 'SONY']),
('RUPEES', ['12000', '10000', '15000', '14000']),
('USD', ['700', '650', '800', '750'])

))
d = DataFrame(table)
print("DATA OF DATAFRAME")
print(d)
p = d.pivot(index='ITEM', columns='COMPANY', values='RUPEES')

print("\n\nDATA OF PIVOT")
print(p)
print (p[p.index=='TV'].LG.values)

#pivot() creates a new table/DataFrame whose columns are the unique values
in COMPANY and whose rows are indexed with the unique values of ITEM.Last statement
of above program retrun value of TV item LG company i.e. 12000

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

#Pivoting By Multiple Columns
Now in previous example, we want to pivot the values of both RUPEES an USD together,
we will have to use pivot function in below manner.

p = d.pivot(index='ITEM', columns='COMPANY')

This will return the following pivot.

RUPEES USD
COMPANY LG SONY VIDEOCON LG SONY VIDEOCON

ITEM
AC 15000 14000 NaN 800 750 NaN
TV 12000 NaN 10000 700 NaN 650

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

#Common Mistake in Pivoting
pivot method takes at least 2 column names as parameters - the index and the columns named
parameters. Now the problem is that,What happens if we have multiple rows with the same values
for these columns? What will be the value of the corresponding cell in the pivoted table using pivot
method? The following diagram depicts the problem:

d.pivot(index='ITEM', columns='COMPANY', values='RUPEES')
It throws an exception with the following message:
ValueError: Index contains duplicate entries, cannot reshape

ITEM COMPANY RUPEES USD

TV LG 12000 700

TV VIDEOCON 10000 650

TV LG 15000 800

AC SONY 14000 750

COMPANY LG SONY VIDEOCON
ITEM

AC NaN 14000 NaN

TV 12000 or 15000 ? NaN 10000

Pivoting - dataframe

Visit : python.mykvs.in for regular updates

#Pivot Table
The pivot_table() method comes to solve this problem. It works like pivot, but it
aggregates the values from rows with duplicate entries for the specified columns.

ITEM COMPANY RUPEES USD

TV LG 12000 700

TV VIDEOCON 10000 650

TV LG 15000 800

AC SONY 14000 750

COMPANY LG SONY VIDEOCON
ITEM

AC NaN 14000 NaN

TV 13500 = mean(12000,15000) NaN 10000

d.pivot_table(index='ITEM', columns='COMPANY', values='RUPEES‘,aggfunc=np.mean)
In essence pivot_table is a generalisation of pivot, which allows you to aggregate multiple values with
the same destination in the pivoted table.

Filling the missing data Eg.

import pandas as pd

import numpy as np

raw_data = {'name': ['freya', 'mohak', 'rajesh'],

'age': [42, np.nan, 36] }

df = pd.DataFrame(raw_data, columns = ['name',

'age'])

print(df)

df['age']=df['age'].fillna(0)

print(df)

In above e.g. age of mohak is filled with 0

Note :- The dropna() function is used to
remove missing values. df.dropna() will remove
the record of mohak

name age

0

1

freya 42.0

mohak NaN

2 rajesh 36.0

name age
1 freya 42.0

2 mohak 0.0

3 rajesh 36.0

Visit : python.mykvs.in for regular updates

Handling Missing Data

Importing data from a
MySQL database into a
Pandas data frame

Visit : python.mykvs.in for regular updates

import mysql.connector as sql
import pandas as pd
db_connection = sql.connect(host='localhost', database='bank', user='root',
password='root')
db_cursor = db_connection.cursor()
db_cursor.execute('SELECT * FROM bmaster')
table_rows = db_cursor.fetchall()
df = pd.DataFrame(table_rows)
print(df)

OUTPUT
Will be as data available in table bmaster

Note :- for mysql.connector library use pip install mysql_connector command in
command prompt.
Pass proper host name,database name,user name and password in connect method.

Exporting data to a
MySQL database from
a Pandas data frame

Visit : python.mykvs.in for regular updates

import pandas as pd
from sqlalchemy import create_engine
engine = create_engine('mysql+mysqlconnector://root:root@localhost/bank')
lst = ['vishal', 'ram']
lst2 = [11, 22]
Calling DataFrame constructor after zipping
both lists, with columns specified
df = pd.DataFrame(list(zip(lst, lst2)),

columns =['Name', 'val'])
df.to_sql(name='bmaster', con=engine, if_exists = 'replace', index=False)

user name password server databasename
Note :- Create dataframe as per the structure of the table.to_sql() method is used to write
data from dataframe to mysql table. Standard library sqlalchemy is being used for writing
data.

